Preprints

A Neural Mean Embedding Approach for Back-door and Front-door Adjustment

We consider the estimation of average and counterfactual treatment effects, under two settings: back-door adjustment and front-door adjustment. The goal in both cases is to recover the treatment effect without having an access to a hidden confounder. …

On Instrumental Variable Regression for Deep Offline Policy Evaluation

We show that the popular reinforcement learning (RL) strategy of estimating the state-action value (Q-function) by minimizing the mean squared Bellman error leads to a regression problem with confounding, the inputs and output noise being correlated. …

Reproducing Kernel Methods for Nonparametric and Semiparametric Treatment Effects

We propose a family of reproducing kernel ridge estimators for nonparametric and semiparametric policy evaluation. The framework includes (i) treatment effects of the population, of subpopulations, and of alternative populations; (ii) the …

Similarity-based Classification: Connecting Similarity Learning to Binary Classification

In real-world classification problems, pairwise supervision (i.e., a pair of patterns with a binary label indicating whether they belong to the same class or not) can often be obtained at a lower cost than ordinary class labels. Similarity learning …

Alternate Estimation of a Classifier and The Class-Prior from Positive and Unlabeled Data

We consider a problem of learning a binary classifier only from positive data and unlabeled data (PU learning) and estimating the class-prior in unlabeled data under the case-control scenario. Most of the recent methods of PU learning require an …