

- Introduce a novel uncoupled regression problem with pairwise comparison data.
- Propose new empirical risk minimization methods to solve the problem.
- Propose two estimators for a risk for general marginal target distributions.

Motivating Example

Sensitive Data:

- e.g. Salary, Number of crimes committed before,...
- People won't give an explicit label.

• Containing sensitive data leads to the risk of security breach.

Goal: To build a prediction model from marginal distribution of sensitive data

Uncoupled Regression

Ordinary Regression:

- Target Y generated from feature X as $Y = f(\mathbf{X}) + \epsilon$.
- Learn a model \hat{f} from coupled data $\mathcal{D}_{\mathbf{X},\mathbf{Y}} = \{(\mathbf{x}_i, y_i)\}$ generated from joint distribution $P_{\mathbf{X},Y}$.
- Uncoupled Regression:
- Unlabeled data $\mathcal{D}_{\mathbf{X}} = \{\mathbf{x}_i\}$ generated from distribution $P_{\mathbf{X}}(\mathbf{x}) = \int P_{\mathbf{X},Y}(\mathbf{x},y) dy$.
- Target $\mathcal{D}_Y = \{y_i\}$ generated from marginal distribution $P_Y(y) = \int P_{\mathbf{X},Y}(\mathbf{x},y) d\mathbf{x}$.
- We try to learn a model \hat{f} to predict Y from X.
- Since no correspondence in $\mathcal{D}_{\mathbf{X}}$ and \mathcal{D}_{Y} ,

problem is ill-posed without any further assumption.

Pairwise Comparison Data

Difficult to get sensitive data but easier to get their order.

- People might be willing to give order information.
- Pairwise Comparison Data $\mathcal{D}_{\mathrm{R}} = \{\mathbf{x}_{i}^{+}, \mathbf{x}_{i}^{-}\}$
- Consists of pairs of features $\{\mathbf{x}_i^+, \mathbf{x}_i^-\}$ such that

$$y(\mathbf{x}_i^+) > y(\mathbf{x}_i^-),$$

- where $y(\mathbf{x}_i^+), y(\mathbf{x}_i^-)$ are the target values for $\mathbf{x}_i^+, \mathbf{x}_i^-$, respectively.
- Generation Process:
- Generate two samples $(\mathbf{X}, Y), (\mathbf{X}', Y')$ from joint distribution $P_{\mathbf{X},Y}$. 2 If $Y \ge Y'$, $\mathbf{X}^+ = \mathbf{X}$ and $\mathbf{X}^- = \mathbf{X}'$. If not, the opposite holds.
- Let $P_{\mathbf{X}^+}, P_{\mathbf{X}^-}$ be the distributions of each comparison data.

Problem

Learn a model f from Unlabeled data $\mathcal{D}_{\mathbf{X}}$, Target values \mathcal{D}_{Y} , and Comparative Data \mathcal{D}_{R}

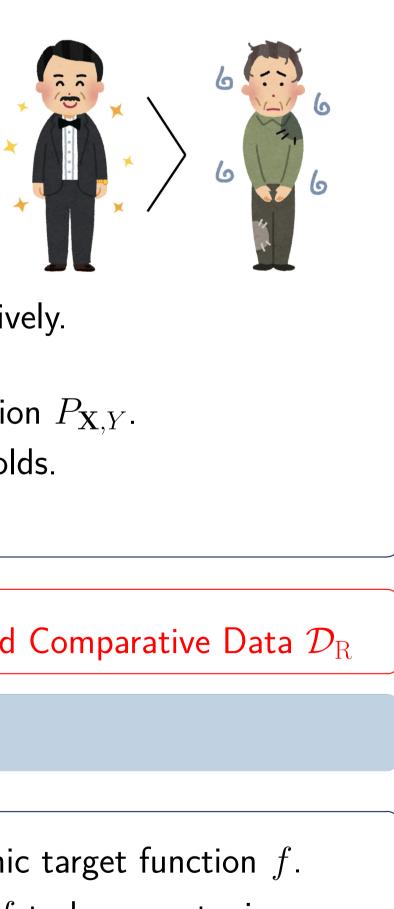
Related Work

[Carpentier and Schlueter, 2016]

Uncoupled regression with one-dimensional features and monotonic target function f.

- Requires features to be one-dimensional and target function f to be monotonic. Involves complex optimization in learning.
- **Our Problem**
- Applicable to features with multi-dimensions and non-monotonic f.
- Easy to implement. (Can be reduced to minimization of a convex function.)

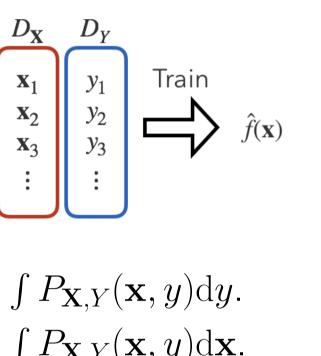
THE UNIVERSITY OF TOKYO



Uncoupled Regression from Pairwise Comparison Data

Liyuan Xu^{1,2}, Junya Honda^{1,2}, Gang Niu², Masashi Sugiyama^{2,1} ¹The University of Tokyo ²RIKEN

Algorithm



Empirical Risk Minimization Principle

- Construct an unbiased estimator of risk (e.g. l_2 -risk) from coupled data.
- Minimize the unbiased risk estimator to learn a model \hat{f} .

Distribution of Comparison Data

Lemma Let F_Y be the cumulative distribution function of Y. Then,

 $\mathbb{E}_{\mathbf{X}^+}[f(\mathbf{X}^+)] = 2\mathbb{E}_{\mathbf{X},Y}[F_Y(Y)f(\mathbf{X})],$ $\mathbb{E}_{\mathbf{X}^{-}}[f(\mathbf{X}^{-})] = 2\mathbb{E}_{\mathbf{X},Y}[(1 - F_{Y}(Y))f(\mathbf{X})],$

Therefore, if $F_Y(y) = y$ (i.e. marginal distribution P_Y is uniform on [0, 1]), $\mathbb{E}_{\mathbf{X},Y}[(Y - f(\mathbf{X}))^2] = \mathbb{E}_Y[Y^2] + \mathbb{E}_{\mathbf{X}}[(f(\mathbf{X}))^2] - 2\mathbb{E}_{\mathbf{X}}$ $\mathcal{L} = \mathbb{E}_{Y}[Y^{2}] + \mathbb{E}_{\mathbf{X}}[(f(\mathbf{X}))^{2}] - \mathbb{E}_{\mathbf{X}}^{2}$ $\xleftarrow{\mathsf{Unbiased}} \mathbb{E}_Y[Y^2] + \frac{1}{|\mathcal{D}_{\mathbf{X}}|} \sum_{\mathbf{x}_i \in \mathcal{D}_{\mathbf{X}}} (f(\mathbf{x}_i \in \mathcal{D}_{\mathbf{X}}))$

- $\mathbb{E}_{Y}[Y^{2}]$ does not depend on f and can be ignored in optimization.
- $\{\mathbf{x}_i^-\}$ can be used for variance reduction.
- However, we cannot construct unbiased estimators for all marginal distributions. \rightarrow Propose two methods to construct estimators with small bias.

Risk Approximation Approach

Main Idea Approximate the expectation $\mathbb{E}_{\mathbf{X},Y}[Yf(\mathbf{X})]$ by the linear combination $w_1 \mathbb{E}_{\mathbf{X}^+}[f(\mathbf{X}^+)] +$

Theorem Let \hat{f}_{DA} be the minimizer of

$$\mathbb{E}_{Y}[Y^{2}] + \frac{1}{|\mathcal{D}_{\mathbf{X}}|} \sum_{\mathbf{x}_{i} \in \mathcal{D}_{\mathbf{X}}} (f(\mathbf{x}_{i}))^{2} - \frac{1}{|\mathcal{D}_{\mathbf{R}}|} \sum_{(\mathbf{x}_{i}^{+}, \mathbf{x}_{i})} \left(\frac{1}{|\mathcal{D}_{\mathbf{R}}|} \right)^{2}$$

Then,

$$\mathbb{E}_{Y}[Y^{2}] + \frac{1}{|\mathcal{D}_{\mathbf{X}}|} \sum_{\mathbf{x}_{i} \in \mathcal{D}_{\mathbf{X}}} (f(\mathbf{x}_{i}))^{2} - \frac{1}{|\mathcal{D}_{\mathbf{R}}|} \sum_{(\mathbf{x}_{i}^{+}, \mathbf{x}_{i}^{-}) \in \mathcal{D}_{\mathbf{R}}} (w_{1}f(\mathbf{x}_{i}^{+}) + w_{2}f(\mathbf{x}_{i}^{-})) . \quad (1)$$
with an adequate condition, with probability $1 - \delta$,
$$R(\hat{f}_{\mathbf{R}\mathbf{A}}) \leq R(f) + O\left(\sqrt{\frac{\log 1/\delta}{n_{\mathrm{U}}}}\right) + O\left(\sqrt{\frac{\log 1/\delta}{n_{\mathrm{R}}}}\right) + \operatorname{Err}(w_{1}, w_{2})$$

holds, where R is l_2 -risk, F_Y is the CDF of Y and Err is defined as $\operatorname{Err}(w_1, w_2) = \mathbb{E}_Y[|Y - w_1 F_Y(Y) - w_2(1 - F_Y(Y))|].$

- When marginal distribution P_Y is uniform, estimator (1) is unbiased for R. • In this case, Err = 0 with $(w_1, w_2) = (1, 0)$.
- Can be generalized to any risk defined based on Bregman divergence.
- See the paper for the detail.

Referece

A. Carpentier and T. Schlueter. Learning relationships between data obtained independently. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, 2016.

Regression RiskUnbiasedEmpirical Risk $R(f) = \mathbb{E}_{\mathbf{X},Y}[(Y - f(\mathbf{X}))^2]$ $\hat{R}(f) = \frac{1}{n} \sum_{i=1}^n (y_i - f(\mathbf{x}_i))^2$

$$\begin{split} & \sum_{\mathbf{X},Y} [Yf(\mathbf{X})] \ & \mathbf{X}^+[f(\mathbf{X}^+)] \ & = f(\mathbf{x}_i))^2 - rac{1}{|\mathcal{D}_{\mathrm{R}}|} \sum_{(\mathbf{x}_i^+,\mathbf{x}_i^-)\in\mathcal{D}_{\mathrm{R}}} f(\mathbf{x}_i^+) \end{split}$$

$$\vdash w_2 \mathbb{E}_{\mathbf{X}^-}[f(\mathbf{X}^-)], \ w_1, w_2 \in \mathbb{R}.$$

Target Transformation Approach

Main Idea
Transform target
$$Y$$
 to $F_Y(Y)$, an

Note, marginal distribution of $F_Y(Y)$ is uniform on [0, 1].

Theorem With an appropriate condition, the minimizer \hat{f}_{TT} of

$$\mathbb{E}_{Y}[Y^{2}] + \sum_{i=1}^{n_{\mathrm{U}}} (F_{Y}(f(\mathbf{x}_{i})))^{2} - \sum_{i=1}^{n_{\mathrm{R}}} F_{Y}(f(\mathbf{x}_{i}^{+}))$$

$$\leq R(f) + O\left(\sqrt{\frac{\log 1/\delta}{n_{\mathrm{U}}}}\right) + O\left(\sqrt{\frac{\log 1/\delta}{n_{\mathrm{D}}}}\right) + \Delta_{\mathrm{TT}}$$

$$(2)$$

satisfies

$$\mathbb{E}_{Y}[Y^{2}] + \sum_{i=1}^{n_{\mathrm{U}}} (F_{Y}(f(\mathbf{x}_{i})))^{2} - \sum_{i=1}^{n_{\mathrm{R}}} F_{Y}(f(\mathbf{x}_{i}^{+}))$$

$$R(\hat{f}_{\mathrm{TT}}) \leq R(f) + O\left(\sqrt{\frac{\log 1/\delta}{n_{\mathrm{U}}}}\right) + O\left(\sqrt{\frac{\log 1/\delta}{n_{\mathrm{R}}}}\right) + \Delta_{\mathrm{TT}}$$

$$(2)$$

with probability $1 - \delta$, where R is

- $\Delta_{\rm TT}$ depends on the shape of P_Y and noise level.
- The theorem only holds for l_2 -risks.

Experiments

Settings

- Used benchmark datasets from the UCI repository.

Methods to be compared

- Linear Regression using fully labeled ordinary coupled data.

where $\hat{n}(\mathbf{x})$ is the predicted rank in the data.

Results

	Supervised Regression	Uncoupled Regression		
Dataset	LR	SVMRank	RA	TT
housing	24.5(5.0)	110.3(29.5)	29.5(6.9)	22.5(6.2)
diabetes	3041.9(219.8)	8575.9(883.1)	3087.3(256.3)	3127.3(278.8)
airfoil	23.3(2.2)	62.1(7.6)	23.7(2.0)	22.7(2.2)
concrete	109.5(13.3)	322.9(45.8)	111.7(13.2)	139.1(17.9)
powerplant	20.6(0.9)	372.2(34.8)	21.8(1.1)	22.0(1.0)
mpg	12.1(2.04)	125(15.1)	12.8(2.16)	10.3(2.08)
redwine	0.412(0.0361)	1.28(0.112)	0.442(0.0473)	0.466(0.0412)
whitewine	0.574(0.0325)	1.58(0.0691)	0.597(0.0382)	0.644(0.0414)
abalone	5.05(0.375)	20.9(1.44)	5.26(0.372)	5.54(0.424)
Better than SVMRank, and may be better than ordinal supervised learning				

Detter than Svivikank, and may be better than ordinal supervised learning

nd minimize the risk on transformed variable: $\mathbb{E}_{\mathbf{X},Y}[(F_Y(Y) - F_Y(f(\mathbf{X})))^2].$

s
$$l_2$$
-risk.

• When marginal is uniform, estimator (2) is unbiased for R, since $F_Y(y) = y$.

• Used original features as unlabeled data and sampled 5000 pairs of comparison data. • Learned linear models and predicted the target value for unlabelled data.

• Train SVMRank using pairwise comparison data, predict ranking, and predict value by

$$\hat{F}(\mathbf{x}) = F_Y^{-1}\left(\frac{\hat{n}(\mathbf{x})}{n_{\mathrm{U}}}\right),$$

