A fully adaptive algorithm for pure exploration in linear bandits

Liyuan Xu^{1,2}, Junya Honda^{1,2}, Masashi Sugiyama^{2,1} ¹The University of Tokyo ²RIKEN

Slot K

 x_K

Abstract

- Proposed a new adaptive algorithm for best arm identification in linear bandits, LinGapE (Linear Gap-based Exploration).
- Derived the sample complexity of LinGapE, which matches the sample complexity of an oracle algorithm up to a constant in some limit.
- Showed superiority of LinGapE through experiments based on synthetic and realistic settings.

Problem Settings

- Linear Bandits
- The set of arms $[K] = 1, 2, \ldots, K$ and the features of arms $x_1, x_2, \ldots, x_K \in \mathbb{R}^d$
- At each round t, an agent pulls one arm $a_t \in [K]$ and observes reward r_t .

Proposed Method: LinGapE

LinGapE = Linear Gap-based Exploration Stopping condition:

- Based on the confidence bound in (2).
- Valid for adaptive strategies as well.

Arm selection strategy:

At each round t, repeat the following.

- Nominate two arms i_t, j_t .
- Pull the arm a_t that discriminates i_t, j_t the most.
- Algorithm 1: LinGapE

Get an initial estimation $\hat{\theta}_K$ by pulling each arm once.; **Loop** t = K, K+1, ...

// Nominate (i_t, j_t) for candidates $i_t, j_t, B(t) \leftarrow \text{Select-direction}(\hat{\theta}_t);$

if $B(t) \leq \varepsilon$ then Return i_t as the best arm \hat{a}^* ;

// Pull arms for estimating the gap of them Select the arm a_{t+1} based on (5);

Pull arm a_{t+1} and update estimation $\hat{\theta}_{t+1}$;

- Rewards r_t is determined as $r_t = x_{a_t}^\top \theta + \varepsilon$.
- ε : *R*-sub-Gaussian noise
- θ : unknown parameter with l_2 -norm at most S
- The best arm $a^* = \arg \max_i x_i^\top \theta$

(ε, δ) -Best Arm Identification Problem

Goal: Find an arm \hat{a} satisfying $\mathbb{P}[x_{a^*}^\top \theta - x_{\hat{a}}^\top \theta \ge \varepsilon] \le \delta$ within a small number of rounds.

 \rightarrow Need to design an arm selection strategy and a stopping condition.

Applications: Optimizing sensor network, automatic parameter tuning [2] Characteristic: Pulling sub-optimal arms can lead to efficient exploration.

- x_2 Under the current estimation $\hat{\theta}_t$ of θ , arms 1 and 2 have high expected rewards.
 - We can directly estimate the gap between these expected rewards by pulling arm 3.

Confidence Bounds

There are two types of the confidence bounds on θ for sequence of arm selection $\mathbf{x}_n = (x_{a_1}, \ldots, x_{a_n})$ and $A_{\mathbf{x}_n} = \sum_{t=1}^n x_{a_t} x_{a_t}^{\top}, \ b_{\mathbf{x}_n} = \sum_{t=1}^n r_t x_{a_t}$.

Confidence Bound for Static Strategies [3]

For any fixed sequence x_n , if noise variable ε is bounded $\varepsilon \in [-R, R]$, (which is R-sub-Gaussian)

The algorithm for nominating i_t, j_t

Arm i_t is the estimated best arm, and arm j_t is the arm that is the most likely to surpass i_t .

Algorithm 2: Select-direction

Procedure Select-direction($\hat{\theta}_t$): $i_t \leftarrow \arg \max_{i \in [K]} (x_i^\top \hat{\theta}_t);$	$\beta_t(i,j) = \ x_i - x_j\ _{(A_t^{\lambda})^{-1}}$	$\left(R\sqrt{2\log\frac{\det(A_t^{\lambda})^{\frac{1}{2}}\det(\lambda I)^{-\frac{1}{2}}}{\delta}} + \lambda^{\frac{1}{2}}S\right)$
$ \begin{array}{c} j_t \leftarrow \arg \max_{j \in [K]} (\Delta_t(j, i_t) + \beta_t(j, i_t)); \\ B(t) \leftarrow \max_{j \in [K]} (\hat{\Delta}_t(j, i_t) + \beta_t(j, i_t)); \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\hat{\Delta}_t(i,j) = (x_i - x_j)^\top \hat{\theta}_t, \Delta_t(i,j) = (x_i - x_j)^\top \hat{\theta}_t,$	$A_t^{\lambda} = \lambda I + \sum_{k=1}^t x_{a_k} x_{a_k}^{\top}$

The algorithm for selecting a_{t+1}

• Compute the optimal arm selection ratio $\{p_k^*(i,j)\}_{k\in[K]}$ for discriminating arms i and j by

$$\{p_k^*(i,j)\}_{k\in[K]} = \underset{\{p_k\}_{k\in[K]}}{\arg\min} \|x_i - x_j\|_{\Lambda_p^{-1}}^2 \quad \text{s.t.} \sum_{k=1}^K p_k = 1, \ p_k \ge 0, \ \Lambda_p = \sum_{k=1}^K p_k x_k x_k^\top, \quad (4)$$

which can be solved by the linear program.

• a_{t+1} is decided based on i_t, j_t as follows.

$$a_{t+1} = \arg \min_{a \in [K]: \, p_a^*(i_t, j_t) > 0} \, T_a(t) / p_a^*(i_t, j_t),$$

where $T_a(t)$ is the number of times that arm a is pulled until round t.

Theoretical Analysis

Theorem 1: Sample Complexity of LinGapE

If $\lambda < \frac{2R^2}{C^2} \log \frac{K^2}{S}$, then the number of samples τ of LinGapE satisfies

 $|x^{\top}\theta - x^{\top}\hat{\theta}_n| \le 2R||x||_{A_{\mathbf{x}_n}^{-1}}\sqrt{2\log\left(6n^2K/(\delta\pi^2)\right)}, \quad \hat{\theta}_n = A_{\mathbf{x}_n}^{-1}b_{\mathbf{x}_n}$ (1)

holds for all $n \in \mathbb{N}$ and all $x \in \{x_i\}_{i=1}^K$ with probability at least $1 - \delta$ for $||x||_A = \sqrt{x^T A x}$.

Confidence Bound for Adaptive Strategies [1] For any arm selection sequence \mathbf{x}_n and $A_{\mathbf{x}_n}^{\lambda} = \lambda I + A_{\mathbf{x}_n}$ for $\lambda > 0$,

 $|x^{\top}\theta - x^{\top}\hat{\theta}_n^{\lambda}| \le R||x||_{(A_{\mathbf{x}_n}^{\lambda})^{-1}}\sqrt{2\log(\det(A_{\mathbf{x}_n}^{\lambda})^{\frac{1}{2}}K/(\lambda^{\frac{d}{2}}\delta))} + \lambda^{\frac{1}{2}}S, \quad \hat{\theta}_n^{\lambda} = (A_{\mathbf{x}_n}^{\lambda})^{-1}b_{\mathbf{x}_n}$ (2)

holds for all $n \in \mathbb{N}$ and all $x \in \{x_i\}_{i=1}^K$ with probability at least $1 - \delta$.

(2) is valid for adaptive strategies, but looser by $\sqrt{\log(\det(A_{\mathbf{x}_n}^{\lambda}))} = O(\sqrt{d}).$

Prior Methods

Work by Soare et al. [3]

- Constructs a stopping condition based on (1) to avoid $O(\sqrt{d})$ looseness of (2).
- Proposes static and semi-adaptive arm selection strategies which make (1) valid.
- Derives the lower bound of sample complexity for static strategies.

Arm selection strategies:

- \mathcal{XY} -static: Fix all arm selection before observing any samples.
- Arm selection strategy based on the literature of transductive experimental design.
- Cannot change arm selection adaptively based on rewards.
- $\mathcal{X}\mathcal{Y}$ -adaptive: Semi-adaptive algorithm that adaptively changes static arm allocations.
 - Divide rounds into multiple phases, employ different arm allocations in different phases.
 - Must discard all samples collected in previous phases for the validity of (1).

Lower bound of static strategies:

$$\mathbb{P}\left[\tau \leq 8H_{\varepsilon}R^{2}\log\frac{K^{2}}{\delta} + C(H_{\varepsilon},\delta)\right] \geq 1 - \delta, \quad H_{\varepsilon} = \sum_{k=1}^{K} \max_{i,j\in[K]} \frac{p_{k}^{*}(i,j)\rho(i,j)}{\max\left(\varepsilon,\frac{\varepsilon+\Delta_{i}}{3},\frac{\varepsilon+\Delta_{j}}{3}\right)^{2}},$$
where $C(H_{\varepsilon},\delta) = O\left(dH_{\varepsilon}\log\left(H_{\varepsilon}\log\frac{1}{\delta}\right)\right)$ and $\rho(i,j)$ is the optimal value of (4).

As shown above, looseness of $O(\sqrt{d})$ does not affect the main term. Furthermore, the following statements holds for H^{oracle} in (3):

 $H_{\varepsilon} \leq 72 K H^{\text{oracle}}, \quad H_{\varepsilon} \to 72 H^{\text{oracle}} (\Delta_1 / \Delta_i \to 0).$

The performance of LinGapE matches the oracle algorithm in this limit.

Experiments

- Synthetic setting used in [3]:
 - The number of arms is K = d + 1, where features are

 $x_1 = e_1, x_2 = e_2, \dots, x_d = e_d, x_{d+1} = (\cos(0.01), \sin(0.01), 0, \dots, 0)^{+}.$

- Set $\theta = (2, 0, \dots, 0)^{\top}$.
 - $x_1^{\top} \theta = 2$ vs. $x_{d+1}^{\top} \theta = 2\cos(0.01) \approx 1.9999$.
 - Arm 2 can discriminate arms 1 and d + 1.
- LinGapE mostly select arm 2.
- Thus, $det(A_{\mathbf{x}_n}^{\lambda}) = o(n^d)$, which makes (2) tight.
- LinGapE stops faster than $\mathcal{X}\mathcal{Y}$ -oracle.

• The lower bound is $\Omega(H^{\text{oracle}} \log 1/\delta)$, where H^{oracle} is defined as

$$H^{\text{oracle}} = \min_{\{p_k\}_{k \in [K]}} \max_{i \in [K] \setminus \{a^*\}} \frac{\|x_{a^*} - x_i\|_{\Lambda_p^{-1}}^2}{\Delta_i^2} \quad \text{s.t.} \sum_{k=1}^K p_k = 1, \ p_k \ge 0, \ \Lambda_p = \sum_{k=1}^K p_k x_k x_k^\top \quad (3)$$

for $\Delta_i = x_{a^*}^\top \theta - x_i^\top \theta$.

- Lower bound is derived by considering an oracle algorithm, \mathcal{XY} -oracle.
- \mathcal{XY} -oracle computes the optimal arm selection ratio using true θ , which is unknown in reality.

Our Contributions

- Use a stopping condition based on (2), which allows employing adaptive strategies. • Prove that $O(\sqrt{d})$ looseness in (2) does not appear in the main term of the sample
- complexity.
- Confirm that looseness of (2) does not harm performances empirically.

- Consists of pairs of user-article feature x and target y (y = 1 if seen, and y = 0 otherwise).
- Relatively high-dimensional data (36-dimensional).
- Estimate θ by linear ridge regression in $y = x^{\top} \theta$.
- Run simulations based on the estimated θ .
- 5 times less observations compared to \mathcal{XY} -static.
- Less dependent on K compared to \mathcal{XY} -static.
- Looseness of (2) does not harm empirical performances.

- . Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear stochastic bandits. NIPS2011.
- Hoffman, B. Shahriari, and N. Freitas. On correlation and budget constraints in model-based bandit optimization with Μ application to automatic machine learning. AISTATS2014.
- M. Soare, A. Lazaric, and R. Munos. Best-arm identification in linear bandits. NIPS2014. [3]
- [4] https://webscope.sandbox.yahoo.com/

(5)