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Abstract
• Proposed a new adaptive algorithm for best arm identification in linear bandits, LinGapE
(Linear Gap-based Exploration).

• Derived the sample complexity of LinGapE, which matches the sample complexity of an oracle
algorithm up to a constant in some limit.

• Showed superiority of LinGapE through experiments based on synthetic and realistic settings.

Problem Settings
Linear Bandits� �
• The set of arms [K] = 1, 2, . . . , K and the features of arms x1, x2, . . . , xK ∈ Rd

• At each round t, an agent pulls one arm at ∈ [K] and observes reward rt.
• Rewards rt is determined as rt = x>atθ + ε.

• ε: R-sub-Gaussian noise
• θ: unknown parameter with l2-norm at most S

• The best arm a∗ = arg maxi x>i θ
� �

(ε, δ)-Best Arm Identification Problem� �
Goal: Find an arm â satisfying P[x>a∗θ − x>â θ ≥ ε] ≤ δ within a small number of rounds.

→ Need to design an arm selection strategy and a stopping condition.� �
Applications: Optimizing sensor network, automatic parameter tuning [2]
Characteristic: Pulling sub-optimal arms can lead to efficient exploration.

• Under the current estimation θ̂t of θ, arms 1 and 2 have
high expected rewards.

• We can directly estimate the gap between these expected
rewards by pulling arm 3.

Confidence Bounds
There are two types of the confidence bounds on θ for sequence of arm selection xn = (xa1, . . . , xan)
and Axn =

∑n
t=1 xatx

>
at
, bxn =

∑n
t=1 rtxat.

Confidence Bound for Static Strategies [3]� �
For any fixed sequence xn, if noise variable ε is bounded ε ∈ [−R,R], (which is R-sub-Gaussian)

|x>θ − x>θ̂n| ≤ 2R‖x‖A−1
xn

√
2 log (6n2K/(δπ2)), θ̂n = A−1

xn bxn (1)

holds for all n ∈ N and all x ∈ {xi}Ki=1 with probability at least 1− δ for ‖x‖A =
√
x>Ax.� �

Confidence Bound for Adaptive Strategies [1]� �
For any arm selection sequence xn and Aλ

xn = λI + Axn for λ > 0,

|x>θ − x>θ̂λn| ≤ R‖x‖(Aλ
xn)−1

√
2 log(det(Aλ

xn)
1
2K/(λd

2δ)) + λ
1
2S, θ̂λn = (Aλ

xn)
−1bxn (2)

holds for all n ∈ N and all x ∈ {xi}Ki=1 with probability at least 1− δ.� �
(2) is valid for adaptive strategies, but looser by

√
log(det(Aλ

xn)) = O(
√
d).

Prior Methods
Work by Soare et al. [3]� �

• Constructs a stopping condition based on (1) to avoid O(
√
d) looseness of (2).

• Proposes static and semi-adaptive arm selection strategies which make (1) valid.
• Derives the lower bound of sample complexity for static strategies.

Arm selection strategies:
• XY-static: Fix all arm selection before observing any samples.

• Arm selection strategy based on the literature of transductive experimental design.
• Cannot change arm selection adaptively based on rewards.

• XY-adaptive: Semi-adaptive algorithm that adaptively changes static arm allocations.
• Divide rounds into multiple phases, employ different arm allocations in different phases.
• Must discard all samples collected in previous phases for the validity of (1).

Lower bound of static strategies:
• The lower bound is Ω(Horacle log 1/δ), where Horacle is defined as

Horacle = min
{pk}k∈[K]

max
i∈[K]\{a∗}

‖xa∗ − xi‖2
Λ−1
p

∆2
i

s.t.
K∑
k=1

pk = 1, pk ≥ 0, Λp =
K∑
k=1

pkxkx
>
k (3)

for ∆i = x>a∗θ − x>i θ.
• Lower bound is derived by considering an oracle algorithm, XY-oracle.
• XY-oracle computes the optimal arm selection ratio using true θ, which is unknown in
reality.� �

Our Contributions� �
• Use a stopping condition based on (2), which allows employing adaptive strategies.
• Prove that O(

√
d) looseness in (2) does not appear in the main term of the sample

complexity.
• Confirm that looseness of (2) does not harm performances empirically.� �

Proposed Method: LinGapE
LinGapE = Linear Gap-based Exploration
Stopping condition:

• Based on the confidence bound in (2).
• Valid for adaptive strategies as well.

Arm selection strategy:
At each round t, repeat the following.

• Nominate two arms it, jt.
• Pull the arm at that discriminates it, jt the most.

Algorithm 1: LinGapE
Get an initial estimation θ̂K by pulling each arm once.;
Loop t = K, K+1, . . .

// Nominate (it, jt) for candidates

it, jt, B(t)← Select-direction(θ̂t);

if B(t) ≤ ε then
Return it as the best arm â∗;

// Pull arms for estimating the gap of them

Select the arm at+1 based on (5);

Pull arm at+1 and update estimation θ̂t+1;

The algorithm for nominating it, jt
Arm it is the estimated best arm, and arm jt is the arm that is the most likely to surpass it.
Algorithm 2: Select-direction
Procedure Select-direction(θ̂t):
it ← arg maxi∈[K](x>i θ̂t);
jt ← arg maxj∈[K](∆̂t(j, it) + βt(j, it));
B(t)← maxj∈[K](∆̂t(j, it) + βt(j, it));
Return it, jt, B(t);

βt(i, j) = ‖xi − xj‖(Aλ
t )−1

R
√

2 log det(Aλ
t )

1
2det(λI)−1

2

δ
+ λ

1
2S


∆̂t(i, j) = (xi − xj)>θ̂t, Aλ

t = λI +
t∑

k=1
xakx

>
ak

The algorithm for selecting at+1
• Compute the optimal arm selection ratio {p∗k(i, j)}k∈[K] for discriminating arms i and j by

{p∗k(i, j)}k∈[K] = arg min
{pk}k∈[K]

‖xi − xj‖2
Λ−1
p

s.t.
K∑
k=1

pk = 1, pk ≥ 0, Λp =
K∑
k=1

pkxkx
>
k , (4)

which can be solved by the linear program.
• at+1 is decided based on it, jt as follows.

at+1 = arg min
a∈[K]: p∗a(it,jt)>0

Ta(t)/p∗a(it, jt), (5)

where Ta(t) is the number of times that arm a is pulled until round t.

Theoretical Analysis
Theorem 1: Sample Complexity of LinGapE� �
If λ ≤ 2R2

S2 log K2

δ , then the number of samples τ of LinGapE satisfies

P
[
τ ≤ 8HεR

2 log K
2

δ
+ C(Hε, δ)

]
≥ 1− δ, Hε =

K∑
k=1

max
i,j∈[K]

p∗k(i, j)ρ(i, j)

max
(
ε, ε+∆i

3 ,
ε+∆j

3

)2,

where C(Hε, δ) = O
(
dHε log

(
Hε log 1

δ

))
and ρ(i, j) is the optimal value of (4).

� �
As shown above, looseness of O(

√
d) does not affect the main term. Furthermore, the following

statements holds for Horacle in (3):
Hε ≤ 72KHoracle, Hε→ 72Horacle (∆1/∆i→ 0).

The performance of LinGapE matches the oracle algorithm in this limit.

Experiments
Synthetic setting used in [3]:� �
• The number of arms is K = d + 1, where features are

x1 = e1, x2 = e2, . . . , xd = ed, xd+1 = (cos(0.01), sin(0.01), 0, . . . , 0)>.
• Set θ = (2, 0, . . . , 0)>.

• x>1 θ = 2 vs. x>d+1θ = 2 cos(0.01) ≈ 1.9999.
• Arm 2 can discriminate arms 1 and d + 1.

• LinGapE mostly select arm 2.
• Thus, det(Aλ

xn) = o(nd), which makes (2) tight.
• LinGapE stops faster than XY-oracle.

� �
Setting based on Yahoo! Webscope Dataset R6A [4]:� �
• Consists of pairs of user-article feature x and target y (y = 1 if seen, and y = 0 otherwise).
• Relatively high-dimensional data (36-dimensional).
• Estimate θ by linear ridge regression in y = x>θ.
• Run simulations based on the estimated θ.
• 5 times less observations compared to XY-static.
• Less dependent on K compared to XY-static.
• Looseness of (2) does not harm empirical performances.� �
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